Running an NMA with a Reference file and test data
Source:vignettes/reference-file-test-data.Rmd
reference-file-test-data.Rmd
Borrowing from the approach in the heemod
package, as
well as defining the analysis in an R
script it is also
possible to specify the analysis with only file inputs. This vignette
will show how to do this with a simple example.
Introduction
The idea is to create folder with all of the information needed to
run the NMA analysis contained in files within. The meta information
about the contents of the folder is contained in a reference
file. The reference file is called REFERENCE.csv
.
Reference file
This file contains two columns called type
and
file
. Rows in the type
column must contain one
of the following keywords:
-
bugs
: File containing the BUGS input parameters for MCMC -
analysis
: File containing the scenario information -
subData
: Mandatory NMA data. Required column headings oftx
,base
,study
,Lmean
,Lse
,multi_arm
-
survDataBin
: Optional binary data. Required column headings oftx
,base
,study
,BinN
,BinR
-
survDataMed
: Optional median time data. Required column headings oftx
,base
,study
,medN
,medR
,median
type |
file |
---|---|
bugs |
bugs.csv |
analysis |
analysis.csv |
subData |
subData.csv |
Parameter files
bugs.csv
includes: OpenBUGS or WinBUGS option
PROG
, N.BURNIN
, N.SIMS
,
N.CHAINS
, N.THIN
, PAUSE.
For
example,
PROG, openBugs
N.BURNIN, 1000
N.SIMS, 1500
N.CHAINS, 2
N.THIN, 1
PAUSE, TRUE
and analysis.csv
includes: whether a random effects
model, is_random
; the type of survival data,
data_type
the reference treatment, REFTX
;
effectParam
, label
and endpoint
.
For example,
is_random, FALSE
data_type, hr_data
refTx, X
effectParam, beta
label, my_label
endpoint, my_endpoint
Running an NMA
A single call sets-up the NMA represented by the contents of the folder.
nma_model <- new_NMA_dir(data_dir = here::here("inst/analysis_folder_test"))
Run MCMC
The NMA MCMC function calls the appropriate BUGS model in the usual way.
nma_res <- NMA_run(nma_model, save = FALSE)
#> ====== RUNNING BUGS MODEL
nma_res
#> Inference for Bugs model at "C:\Users\n8tha\AppData\Local\Temp\Rtmp0UB0w3/bugs_model.txt",
#> 2 chains, each with 2500 iterations (first 1000 discarded)
#> n.sims = 3000 iterations saved
#> mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
#> beta[2] -0.2 0.1 -0.4 -0.2 -0.2 -0.1 0.1 1 1200
#> beta[3] -0.4 0.1 -0.7 -0.5 -0.4 -0.3 -0.2 1 2300
#> totLdev 37.0 2.1 35.0 35.6 36.4 37.8 42.7 1 3000
#> deviance 31.0 2.1 29.1 29.6 30.4 31.8 36.8 1 3000
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule, pD = Dbar-Dhat)
#> pD = 2.0 and DIC = 33.1
#> DIC is an estimate of expected predictive error (lower deviance is better).